Signature Schemes based on the MPC-in-the-Head Paradigm

Seongkwang Kim Samsung SDS

SAMSUNG SDS

Ewha-KMS IWC 2023

Secure Multiparty Computation

- Multiparty computation (MPC) enables a computation while preserving privacy
 - Yao's garbled circuit
 - Additive secret sharing (GMW, Beaver triple)
 - Shamir secret sharing

Secure Multiparty Computation

- Multiparty computation (MPC) enables a computation while preserving privacy
 - Yao's garbled circuit
 - Additive secret sharing (GMW, Beaver triple)
 - Shamir secret sharing
- Additive secret sharing
 - Secret is shared additively: $x = \sum_{i} x^{(i)}$
 - Addition is naturally compatible with shares

$$x + y = \sum_{i} x^{(i)} + \sum_{i} y^{(i)} = \sum_{i} (x^{(i)} + y^{(i)})$$

- Multiplication needs a Beaver triple $\{(a^{(i)}, b^{(i)}, c^{(i)})\}_i$ s.t. c = ab
 - 1. Compute $A^{(i)} = x^{(i)} + a^{(i)}$, $B^{(i)} = y^{(i)} + b^{(i)}$ and Open them
 - 2. Locally compute $z^{(i)} = Ay^{(i)} Ba^{(i)} + c^{(i)} = (x + a)y^{(i)} (y + b)a^{(i)} + c^{(i)} = xy^{(i)}$

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function f

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function f
 - 2. Prover commits to all the views of the parties

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function f
 - 2. Prover commits to all the views of the parties
 - 3. Verifier sends a random challenge

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function f
 - 2. Prover commits to all the views of the parties
 - 3. Verifier sends a random challenge
 - 4. Prover opens the challenged view
 - 5. Verifier checks consistency

Want to prove a knowledge of *x* such that f(x) = y

Commit the views

Commit the views

Commit the views

Send commits

Send views

MPCitH-based Signature (Simplified)

Previous Works

Brief History

Brief History

• Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++

- (2,3)-circuit decomposition
- No multiplication triple
- 3-party fixed, large number of repetition

• Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++

- (2,3)-circuit decomposition
- No multiplication triple
- 3-party fixed, large number of repetition

FS transform

- Interactive ZK \rightarrow NIZK
- QROM security is later proved: Unruh → FS

• Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++

- (2,3)-circuit decomposition
- No multiplication triple
- 3-party fixed, large number of repetition

FS transform

- Interactive ZK \rightarrow NIZK
- QROM security is later proved: Unruh → FS

LowMC

- Cipher for MPC/FHE/ZKP
- Low number of AND gates
- 3-bit S-box, random affine
- Reduced parameter sets

• Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++

- (2,3)-circuit decomposition
- No multiplication triple
- 3-party fixed, large number of repetition

FS transform

- Interactive ZK \rightarrow NIZK
- QROM security is later proved: Unruh → FS

LowMC

- Cipher for MPC/FHE/ZKP
- Low number of AND gates
- 3-bit S-box, random affine
- Reduced parameter sets

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91

- Picnic3 = KKW NIZK proof of knowledge + LowMC
- Poor soundness of 3-party \rightarrow use preprocessing model to simulate N parties!

- Picnic3 = KKW NIZK proof of knowledge + LowMC
- Poor soundness of 3-party \rightarrow use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition

- 2-party secure channel model
- No multiplication triple needed
- 3-party fixed, large number of repetition

MPCitH with preprocessing

- N-party broadcast model
- Prover generates multiplication triples and commit to them
- Checking consistency by opening some of triples
- #parties ↑, #repetitions↓

- Picnic3 = KKW NIZK proof of knowledge + LowMC
- Poor soundness of 3-party \rightarrow use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition

- 2-party secure channel model
- No multiplication triple needed
- 3-party fixed, large number of repetition

MPCitH with preprocessing

- N-party broadcast model
- Prover generates multiplication triples and commit to them
- Checking consistency by opening some of triples
- #parties ↑, #repetitions ↓

- Picnic3 = KKW NIZK proof of knowledge + LowMC
- Poor soundness of 3-party \rightarrow use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition

- 2-party secure channel model
- No multiplication triple needed
- 3-party fixed, large number of repetition

MPCitH with preprocessing

- N-party broadcast model
- Prover generates multiplication triples and commit to them
- Checking consistency by opening some of triples
- #parties ↑, #repetitions ↓

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24

BBQ Signature Scheme

• BBQ = KKW with \mathbb{F}_{2^8} multiplication triples + AES

BBQ Signature Scheme

- BBQ = KKW with \mathbb{F}_{2^8} multiplication triples + AES
- Motivation
 - LowMC is not solid compared to AES
 - AES has too much ANDs (LowMC = 600 ANDs, AES = 6400 ANDs)
 - Arithmetic inversion leads to 40% smaller signature size

BBQ Signature Scheme

- BBQ = KKW with \mathbb{F}_{2^8} multiplication triples + AES
- Motivation
 - LowMC is not solid compared to AES
 - AES has too much ANDs (LowMC = 600 ANDs, AES = 6400 ANDs)
 - Arithmetic inversion leads to 40% smaller signature size

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
BBQ	32	31568	unknown	unknown

Banquet Signature Scheme

- Banquet = Multiplication-checking protocol + AES
- Idea
 - Cut-and-choose \rightarrow Sacrificing technique with inverse injection

Banquet Signature Scheme

- Banquet = Multiplication-checking protocol + AES
- Idea
 - Cut-and-choose \rightarrow Sacrificing technique with inverse injection
 - Batching verification

Soundness error = $2m/|\mathbb{F} - m|$

Banquet Signature Scheme

- Banquet = Multiplication-checking protocol + AES
- Idea
 - Cut-and-choose \rightarrow Sacrificing technique with inverse injection
 - Batching verification

Sacrifice to verify $(s_1, t_1, 1)$ (a_1, b_1, c_1) $(s_m, t_m, 1)$ (a_m, b_m, c_m) 3m elements

Soundness error = $2m/|\mathbb{F} - m|$

$$S(1) = s_1, T(1) = t_1$$

$$\vdots$$

$$S(m) = s_m, T(1) = t_m$$

$$P = S \cdot T$$
(Kind of) Sacrifice
half of $P(X)$
to verify

$$P(R) - S(R)T(R) = 0$$

$$m + 1 \text{ elements}$$

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24

Rainier Signature Scheme

- Rainier = Modified Banquet proof + New symmetric primitive Rain
- Motivation
 - AES uses a small field, which occurs poor soundness
 - Banquet already lifts \mathbb{F}_{2^8} to $\mathbb{F}_{2^{32}}$ for soundness
 - Inverse on a large field is not expensive in MPC

Rainier Signature Scheme

- Rainier = Modified Banquet proof + New symmetric primitive Rain
- Motivation
 - AES uses a small field, which occurs poor soundness
 - Banquet already lifts \mathbb{F}_{2^8} to $\mathbb{F}_{2^{32}}$ for soundness
 - Inverse on a large field is not expensive in MPC
- Cryptanalytic characteristic
 - Large inverse and random matrix are used for algebraic attacks
 - Statistical attacks are not much of our interest

Rainier Signature Scheme

- Rainier = Modified Banquet proof + New symmetric primitive Rain
- Motivation
 - AES uses a small field, which occurs poor soundness
 - Banquet already lifts \mathbb{F}_{2^8} to $\mathbb{F}_{2^{32}}$ for soundness
 - Inverse on a large field is not expensive in MPC
- Cryptanalytic characteristic
 - Large inverse and random matrix are used for algebraic attacks
 - Statistical attacks are not much of our interest

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier ₃	32	8544	0.97	0.89

- BN++: Optimization of BN protocol
 - BN20: Sacrificing-based interactive proof protocol
 - Remove needless broadcasts
 - Repeated multiplier
 - Known output share

- BN++: Optimization of BN protocol
 - BN20: Sacrificing-based interactive proof protocol
 - Remove needless broadcasts
 - Repeated multiplier
 - Known output share

- BN++: Optimization of BN protocol
 - BN20: Sacrificing-based interactive proof protocol
 - Remove needless broadcasts
 - Repeated multiplier
 - Known output share
- $x \cdot y = z$
- Helium: BN++ with RMFE (Reverse Multiplication-Friendly Embedding)
 - Small field arithmetic has high soundness error
 - Batch small field operations to a large field one

- BN++: Optimization of BN protocol
 - BN20: Sacrificing-based interactive proof protocol
 - Remove needless broadcasts
 - Repeated multiplier
 - Known output share

$$x \cdot y = z$$

- Helium: BN++ with RMFE (Reverse Multiplication-Friendly Embedding)
 - Small field arithmetic has high soundness error
 - Batch small field operations to a large field one

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier ₃	32	8544	0.97	0.89
BN++Rain ₃	32	6432	0.83	0.77
Helium-AES	32	9888	16.53	16.47

The AlMer Signature Scheme

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on large field
 - Low multiplicative complexity

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on large field
 - Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
 - MiMC (AC 16, AC 20)
 - Agrasta (C 18, AC 21)
 - Jarvis/Friday (ePrint 18, AC 19)
 - Chaghri (CCS 22, EC 23)

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on large field
 - Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
 - MiMC (AC 16, AC 20)
 - Agrasta (C 18, AC 21)
 - Jarvis/Friday (ePrint 18, AC 19)
 - Chaghri (CCS 22, EC 23)

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
 - High degree, but quadratic relation (xy = 1)
 - Invertible
 - Nice DC/LC resistance
 - But, produces many linearly independent quadratic equations

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
 - High degree, but quadratic relation (xy = 1)
 - Invertible
 - Nice DC/LC resistance
 - But, produces many linearly independent quadratic equations

5n quadratic equations c.f. optimally n equations

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
 - High degree, but quadratic relation (xy = 1)
 - Invertible
 - Nice DC/LC resistance
 - But, produces many linearly independent quadratic equations

$$x \xrightarrow{n} \ln y \implies$$

$$\begin{cases} f_1(x_1, \dots, x_n, y_1, \dots, y_n) = 0 \\ \vdots \\ f_{5n}(x_1, \dots, x_n, y_1, \dots, y_n) = 0 \end{cases}$$

5n quadratic equations c.f. optimally n equations More equations lead to a weaker resistance against algebraic attacks!

- Niho exponent
 - $x \mapsto x^{2^{s}+2^{s/2}-1}$ over $\mathbb{F}_{2^{n}}$, n = 2s + 1
 - *n* equations, high-degree
 - 2 multiplications, odd-length field

- Niho exponent
 - $x \mapsto x^{2^{s}+2^{s/2}-1}$ over $\mathbb{F}_{2^{n}}$, n = 2s + 1
 - *n* equations, high-degree
 - 2 multiplications, odd-length field
- NGG exponent (Nawaz et al., 2009)
 - $x \mapsto x^{2^{s+1}+2^{s-1}-1}$ over \mathbb{F}_{2^n} , n = 2s
 - 2*n* equations, even-length field, good DC/LC resistance
 - 2 multiplications

- Niho exponent
 - $x \mapsto x^{2^{s}+2^{s/2}-1}$ over $\mathbb{F}_{2^{n}}$, n = 2s + 1
 - *n* equations, high-degree
 - 2 multiplications, odd-length field
- NGG exponent (Nawaz et al., 2009)
 - $x \mapsto x^{2^{s+1}+2^{s-1}-1}$ over \mathbb{F}_{2^n} , n = 2s
 - 2*n* equations, even-length field, good DC/LC resistance
 - 2 multiplications

- Mersenne exponent
 - $x \mapsto x^{2^{s}-1}$ over $\mathbb{F}_{2^{n}}$
 - 3*n* equations, even-length field, single multiplication
 - moderate DC/LC resistance

- Niho exponent
 - $x \mapsto x^{2^{s}+2^{s/2}-1}$ over $\mathbb{F}_{2^{n}}$, n = 2s + 1
 - *n* equations, high-degree
 - 2 multiplications, odd-length field
- NGG exponent (Nawaz et al., 2009)
 - $x \mapsto x^{2^{s+1}+2^{s-1}-1}$ over \mathbb{F}_{2^n} , n = 2s
 - 2*n* equations, even-length field, good DC/LC resistance
 - 2 multiplications

- Mersenne exponent
 - $x \mapsto x^{2^{s}-1}$ over $\mathbb{F}_{2^{n}}$
 - 3*n* equations, even-length field, single multiplication
 - moderate DC/LC resistance
- Gold exponent
 - $x \mapsto x^{2^{s+1}}$ over \mathbb{F}_{2^n}
 - Even-length field, single multiplication, good DC/LC resistance
 - 4*n* equations

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
 - If prover needs to check multiple multiplications with a same multiplier,
 - e.g. $x_1 \cdot y = z_1, x_2 \cdot y = z_2$
 - Then, the prover can prove them in a batched way
 - More same multiplier \rightarrow Smaller signature size

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
 - If prover needs to check multiple multiplications with a same multiplier,
 - e.g. $x_1 \cdot y = z_1, x_2 \cdot y = z_2$
 - Then, the prover can prove them in a batched way
 - More same multiplier \rightarrow Smaller signature size

Serial S-box (Limited application of repeated multiplier)

Parallel S-box (Full application of repeated multiplier)

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share
- Randomized structure
 - Affine layer is generated from XOF

Scheme	λ	n	ℓ	e_1	e_2	e_3	e_*
AIM-I AIM-III AIM-V	$128 \\ 192 \\ 256$	$128 \\ 192 \\ 256$	_	5	$27 \\ 29 \\ 53$	- - 7	5 7 5

Mersenne S-box

- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces 3*n* quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share
- Randomized structure
 - Affine layer is generated from XOF

Cryptanalytic Scenario

- Single-user setting
 - For a random (pt, iv) $\in \mathbb{F}_{2^n} \times \{0,1\}^n$, a single pair (iv, ct) is given
 - Finding $pt^* \in \mathbb{F}_{2^n}$ such that $AIM[iv](pt^*) = ct$

Cryptanalytic Scenario

- Single-user setting
 - For a random (pt, iv) $\in \mathbb{F}_{2^n} \times \{0,1\}^n$, a single pair (iv, ct) is given
 - Finding $pt^* \in \mathbb{F}_{2^n}$ such that $AIM[iv](pt^*) = ct$
- Multi-user setting
 - For random pairs $(pt_i, iv_i) \in \mathbb{F}_{2^n} \times \{0,1\}^n$, multiple pairs (iv_i, ct_i) are given
 - Finding $pt^* \in \mathbb{F}_{2^n}$ such that $AIM[iv_i](pt^*) = ct_i$ for some i

Cryptanalytic Scenario

- Single-user setting
 - For a random (pt, iv) $\in \mathbb{F}_{2^n} \times \{0,1\}^n$, a single pair (iv, ct) is given
 - Finding $pt^* \in \mathbb{F}_{2^n}$ such that $AIM[iv](pt^*) = ct$
- Multi-user setting
 - For random pairs $(pt_i, iv_i) \in \mathbb{F}_{2^n} \times \{0,1\}^n$, multiple pairs (iv_i, ct_i) are given
 - Finding $pt^* \in \mathbb{F}_{2^n}$ such that $AIM[iv_i](pt^*) = ct_i$ for some i
- IV misuse setting
 - For some chosen iv_i , multiple pairs (iv_i, ct_i) are given
 - Finding $pt^* \in \mathbb{F}_{2^n}$ such that $AIM[iv_i](pt^*) = ct_i$ for some i
 - Expected to be birthday-bound secure

(General) Cryptanalytic Results

Attack	Log of Comp	olexity		Remark	
	AIM-I	AIM-III	AIM-V		
Brute-force	149	214.4	280	Gate-count	
Algebraic	137.3	194.1	260.1	Details in the next slide	
LC	240	360	496	Impossible	
DC	125	187	253	Impossible	
Quantum	159.8	225.2	291.7	Depth * Complexity	
Provable security	126.4	190.4	254.4	Everywhere preimage resistance in the random permutation model	

(Algebraic) Cryptanalytic Results

Scheme	#Var	(#Eqs, Deg) Grobner Basis XL			Dinur's Algorithm			
			Deg. of reg.	Time	D	Time	Time	Memory
AIM-I	n	(3 <i>n</i> , 10)	51	300.8	52	244.8	137.3	138.3
	2 <i>n</i>	(3n, 2) + (3n, 4)	22	214.9	14	150.4	248.3	253.7
	3n	(9 <i>n</i> , 2)	20	222.8	12	148.0	330.1	346.3
AIM-III	n	(3 <i>n</i> , 14)	82	474.0	84	375.3	202.1	203.3
	2 <i>n</i>	(3n, 2) + (3n, 6)	31	310.6	18	203.0	377.5	382.9
	3 <i>n</i>	(9 <i>n</i> , 2)	27	310.8	15	194.1	487.7	512.1
AIM-V	n	(3 <i>n</i> , 12)	100	601.1	101	489.7	264.1	265.9
	2 <i>n</i>	(3n, 2) + (3n, 8)	40	406.2	26	289.5	506.3	511.7
	3n	(6n, 2) + (3n, 4)	47	510.4	20	260.6	716.1	732.3
	4 <i>n</i>	(12 <i>n</i> , 2)	45	530.3	19	266.1	854.4	897.7

Performance Comparison

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Dilithium2	1312	2420	0.10	0.03
Falcon-512	897	690	0.27	0.04
SPHINCS+-128s	32	7856	315.74	0.35
SPHINCS+-128f	32	17088	16.32	0.97
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier ₃	32	8544	0.97	0.89
BN++Rain ₃	32	6432	0.83	0.77
AIMer-L1 (Updated)	32	5904	0.59	0.53
AIMer-L1 (Updated)	32	3840	22.29	21.09

Some Remarks

- Remark
 - We submitted AlMer to KpqC and NIST PQC competition
 - Our homepage: <u>https://aimer-signature.org</u>
 - We are waiting for third-party analysis!
- Future work
 - QROM security of AlMer
 - More optimization on BN++

Thank you! Check out <u>aimer-signature.org</u> Question?