Signature Schemes based on the MPC-in-the-Head Paradigm

Seongkwang Kim Samsung SDS

MPC-in-the-Head Paradigm

Secure Multiparty Computation

- Multiparty computation (MPC) enables a computation while preserving privacy
- Yao's garbled circuit
- Additive secret sharing (GMW, Beaver triple)
- Shamir secret sharing

Secure Multiparty Computation

- Multiparty computation (MPC) enables a computation while preserving privacy
- Yao's garbled circuit
- Additive secret sharing (GMW, Beaver triple)
- Shamir secret sharing
- Additive secret sharing
- Secret is shared additively: $x=\sum_{i} x^{(i)}$
- Addition is naturally compatible with shares

$$
x+y=\sum_{i} x^{(i)}+\sum_{i} y^{(i)}=\sum_{i}\left(x^{(i)}+y^{(i)}\right)
$$

- Multiplication needs a Beaver triple $\left\{\left(a^{(i)}, b^{(i)}, c^{(i)}\right)\right\}_{i}$ s.t. $c=a b$

1. Compute $A^{(i)}=x^{(i)}+a^{(i)}, B^{(i)}=y^{(i)}+b^{(i)}$ and Open them
2. Locally compute $z^{(i)}=A y^{(i)}-B a^{(i)}+c^{(i)}=(x+a) y^{(i)}-(y+b) a^{(i)}+c^{(i)}=x y^{(i)}$

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

Prover

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties
3. Verifier sends a random challenge

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties
3. Verifier sends a random challenge
4. Prover opens the challenged view
5. Verifier checks consistency

MPC-in-the-Head Paradigm (Simplified)

Want to prove a knowledge of x such that $f(x)=y$

MPC-in-the-Head Paradigm (Simplified)

MPC-in-the-Head Paradigm (Simplified)

Send views

$\xrightarrow{\stackrel{C_{1}, C_{2}, C_{3}, C_{4}}{\stackrel{e \in\{1,2,3\}}{ }} \text { View }{ }_{e+1}, \text { View }_{e+2}}$

MPC-in-the-Head Paradigm (Simplified)

Check Consistency
$\operatorname{Commit}\left(\operatorname{View}_{e+1}\right)=C_{e+1}$
$\operatorname{Commit}\left(\operatorname{View}_{e+2}\right)=C_{e+2}$
View $_{e+1} \rightarrow y^{(e+1)}$
View $_{e+2} \rightarrow y^{(e+2)}$
$y^{(e)}=y-y^{(e+1)}-y^{(e+2)}$
$\operatorname{Commit}\left(y^{(1)}, y^{(2)}, y^{(3)}\right)=C_{4}$

MPC-in-the-Head Paradigm (Simplified)

Check Consistency
$\operatorname{Commit}\left(\right.$ View $\left._{e+1}\right)=C_{e+1}$ Commit $\left(\right.$ View $\left._{e+2}\right)=C_{e+2}$

View $_{e+1} \rightarrow y^{(e+1)}$
View $_{e+2} \rightarrow y^{(e+2)}$
$y^{(e)}=y-y^{(e+1)}-y^{(e+2)}$
$\operatorname{Commit}\left(y^{(1)}, y^{(2)}, y^{(3)}\right)=C_{4}$
$\xrightarrow{\stackrel{C_{1}, C_{2}, C_{3}, C_{4}}{e \in\{1,2,3\}}}$

MPC-in-the-Head Paradigm (Simplified)

MPC-in-the-Head Paradigm (Simplified)

Forger

"Soundness error" Probability to pass: 1/3
Commit $\left(\right.$ View $\left._{e+1}\right)=C_{e+1}$ Commit(View $e+2)=C_{e+2}$

View $_{e+1} \rightarrow y^{(e+1)}$
View $_{e+2} \rightarrow y^{(e+2)}$ $y^{(e)}=y-y^{(e+1)}-y^{(e+2)}$ $\operatorname{Commit}\left(y^{(1)}, y^{(2)}, y^{(3)}\right)=C_{4}$
$\xrightarrow{\stackrel{C_{1}, C_{2}, C_{3}, C_{4}}{e \in\{1,2,3\}}}$

MPC-in-the-Head Paradigm (Simplified)

MPCitH-based Signature (Simplified)

Previous Works

Brief History

Signature based on:

Symmetric primitive

FIPS primitivesNon-FIPS primitives

Brief History

Picnic 1

- Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++

- $(2,3)$-circuit decomposition
- No multiplication triple
- 3-party fixed, large number of repetition

Picnic1

- Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++

- $(2,3)$-circuit decomposition
- No multiplication triple
- 3-party fixed, large number of repetition

FS transform

- Interactive ZK \rightarrow NIZK
- QROM security is later proved: Unruh \rightarrow FS

Picnic 1

- Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++

- $(2,3)$-circuit decomposition
- No multiplication triple
- 3-party fixed, large number of repetition

FS transform

- Interactive ZK \rightarrow NIZK
- QROM security is later proved: Unruh \rightarrow FS

LowMC

- Cipher for MPC/FHE/ZKP
- Low number of AND gates
- 3-bit S-box, random affine
- Reduced parameter sets

Picnic 1

- Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++

- $(2,3)$-circuit decomposition
- No multiplication triple
- 3-party fixed, large number of repetition

FS transform

- Interactive ZK \rightarrow NIZK
- QROM security is later proved: Unruh \rightarrow FS

LowMC

- Cipher for MPC/FHE/ZKP
- Low number of AND gates
- 3-bit S-box, random affine
- Reduced parameter sets

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91

KKW Proof System (Picnic3)

- Picnic3 $=$ KKW NIZK proof of knowledge + LowMC
- Poor soundness of 3-party \rightarrow use preprocessing model to simulate N parties!

KKW Proof System (Picnic3)

- Picnic3 $=$ KKW NIZK proof of knowledge + LowMC
- Poor soundness of 3-party \rightarrow use preprocessing model to simulate N parties!

MPCitH with $(2,3)$-decomposition

- 2-party secure channel model
- No multiplication triple needed
- 3-party fixed, large number of repetition

MPCitH with preprocessing

- N-party broadcast model
- Prover generates multiplication triples and commit to them
- Checking consistency by opening some of triples
- \#parties \uparrow, \#repetitions \downarrow

KKW Proof System (Picnic3)

- Picnic3 $=$ KKW NIZK proof of knowledge + LowMC
- Poor soundness of 3-party \rightarrow use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition

- 2-party secure channel model
- No multiplication triple needed
- 3-party fixed, large number of repetition

MPCitH with preprocessing

- N-party broadcast model
- Prover generates multiplication triples and commit to them
- Checking consistency by opening some of triples
- \#parties \uparrow, \#repetitions \downarrow

KKW Proof System (Picnic3)

- Picnic3 $=$ KKW NIZK proof of knowledge + LowMC
- Poor soundness of 3-party \rightarrow use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition

- 2-party secure channel model
- No multiplication triple needed
- 3-party fixed, large number of repetition

MPCitH with preprocessing

- N-party broadcast model
- Prover generates multiplication triples and commit to them
- Checking consistency by opening some of triples
- \#parties \uparrow, \#repetitions \downarrow

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24

BBQ Signature Scheme

- $\mathrm{BBQ}=\mathrm{KKW}$ with $\mathbb{F}_{2^{8}}$ multiplication triples +AES

BBQ Signature Scheme

- $\mathrm{BBQ}=\mathrm{KKW}$ with $\mathbb{F}_{2^{8}}$ multiplication triples +AES
- Motivation
- LowMC is not solid compared to AES
- AES has too much ANDs (LowMC = 600 ANDs, AES = 6400 ANDs)
- Arithmetic inversion leads to 40\% smaller signature size

Boolean circuit

Arithmetic circuit

BBQ Signature Scheme

- $\mathrm{BBQ}=\mathrm{KKW}$ with $\mathbb{F}_{2^{8}}$ multiplication triples + AES
- Motivation
- LowMC is not solid compared to AES
- AES has too much ANDs (LowMC $=600$ ANDs, AES $=6400$ ANDs)
- Arithmetic inversion leads to 40\% smaller signature size

Boolean circuit

Arithmetic circuit

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
BBQ	32	31568	unknown	unknown

Banquet Signature Scheme

- Banquet = Multiplication-checking protocol + AES
- Idea
- Cut-and-choose \rightarrow Sacrificing technique with inverse injection

This work

Banquet Signature Scheme

- Banquet = Multiplication-checking protocol + AES
- Idea
- Cut-and-choose \rightarrow Sacrificing technique with inverse injection
- Batching verification

Soundness error $=2 m /|\mathbb{F}-m|$
$\begin{array}{ccc}\left(s_{1}, t_{1}, 1\right) & \text { Sacrifice to verify } & \left(a_{1}, b_{1}, c_{1}\right) \\ \vdots & & \vdots \\ \left(s_{m}, t_{m}, 1\right) & & \left(a_{m}, b_{m}, c_{m}\right)\end{array}$

$$
\begin{array}{cc}
S(1)=s_{1}, T(1)=t_{1} \\
\vdots \\
S(m)=s_{m}, T(1)=t_{m} \\
P=S \cdot T
\end{array} \quad \begin{gathered}
\text { (Kind of) Sacrifice } \\
\text { half of } P(X) \\
\text { to verify } \\
P(R)-S(R) T(R)=0 \\
m+1 \text { elements }
\end{gathered}
$$

Banquet Signature Scheme

- Banquet = Multiplication-checking protocol + AES
- Idea
- Cut-and-choose \rightarrow Sacrificing technique with inverse injection
- Batching verification

Soundness error $=2 m /|\mathbb{F}-m|$

$$
\begin{array}{cc}
S(1)=s_{1}, T(1)=t_{1} \\
\vdots \\
S(m)=s_{m}, T(1)=t_{m} \\
P=S \cdot T
\end{array} \quad \begin{gathered}
\text { (Kind of) Sacrifice } \\
\text { half of } P(X) \\
\text { to verify } \\
P(R)-S(R) T(R)=0
\end{gathered}
$$

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24

Rainier Signature Scheme

- Rainier = Modified Banquet proof + New symmetric primitive Rain
- Motivation
- AES uses a small field, which occurs poor soundness
- Banquet already lifts $\mathbb{F}_{2^{8}}$ to $\mathbb{F}_{2^{32}}$ for soundness
- Inverse on a large field is not expensive in MPC

Rainier Signature Scheme

- Rainier = Modified Banquet proof + New symmetric primitive Rain
- Motivation
- AES uses a small field, which occurs poor soundness
- Banquet already lifts $\mathbb{F}_{2^{8}}$ to $\mathbb{F}_{2^{32}}$ for soundness
- Inverse on a large field is not expensive in MPC
- Cryptanalytic characteristic
- Large inverse and random matrix are used for algebraic attacks
- Statistical attacks are not much of our interest

Rainier Signature Scheme

- Rainier = Modified Banquet proof + New symmetric primitive Rain
- Motivation
- AES uses a small field, which occurs poor soundness
- Banquet already lifts $\mathbb{F}_{2^{8}}$ to $\mathbb{F}_{2^{32}}$ for soundness
- Inverse on a large field is not expensive in MPC
- Cryptanalytic characteristic
- Large inverse and random matrix are used for algebraic attacks
- Statistical attacks are not much of our interest

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier $_{3}$	32	8544	0.97	0.89

BN++/Helium Proof System

- BN++: Optimization of BN protocol
- BN2O: Sacrificing-based interactive proof protocol
- Remove needless broadcasts
- Repeated multiplier
- Known output share $x \cdot y=z$

BN++/Helium Proof System

- BN++: Optimization of BN protocol
- BN2O: Sacrificing-based interactive proof protocol
- Remove needless broadcasts
- Repeated multiplier
- Known output share

$$
x \cdot y=z
$$

BN++/Helium Proof System

- BN++: Optimization of BN protocol
- BN2O: Sacrificing-based interactive proof protocol
- Remove needless broadcasts
- Repeated multiplier
- Known output share $x \cdot y=z$
- Helium: BN++ with RMFE (Reverse Multiplication-Friendly Embedding)
- Small field arithmetic has high soundness error
- Batch small field operations to a large field one

BN++/Helium Proof System

- BN++: Optimization of BN protocol
- BN2O: Sacrificing-based interactive proof protocol
- Remove needless broadcasts
- Repeated multiplier
- Known output share $\quad x \cdot y=z$
- Helium: BN++ with RMFE (Reverse Multiplication-Friendly Embedding)
- Small field arithmetic has high soundness error
- Batch small field operations to a large field one

Performance

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier $_{3}$	32	8544	0.97	0.89
BN++Rain $_{3}$	32	6432	0.83	0.77
Helium-AES	32	9888	16.53	16.47

The AIMer Signature Scheme

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on large field
- Low multiplicative complexity

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on large field
- Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
- MiMC (AC 16, AC 20)
- Agrasta (C 18, AC 21)
- Jarvis/Friday (ePrint 18, AC 19)
- Chaghri (CCS 22, EC 23)

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on large field
- Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
- MiMC (AC 16, AC 20)
- Agrasta (C 18, AC 21)
- Jarvis/Friday (ePrint 18, AC 19)
- Chaghri (CCS 22, EC 23)

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
- High degree, but quadratic relation $(x y=1)$
- Invertible
- Nice DC/LC resistance
- But, produces many linearly independent quadratic equations

Inverse S-box

- Inverse S-box $\left(x \mapsto x^{-1}\right)$ is widely used in MPC/ZKP-friendly ciphers
- High degree, but quadratic relation $(x y=1)$
- Invertible
- Nice DC/LC resistance
- But, produces many linearly independent quadratic equations
$x \xrightarrow{n} \operatorname{Inv} \rightarrow y \longrightarrow\left\{\begin{array}{l}f_{1}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=0 \\ \vdots \\ f_{5 n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=0\end{array}\right.$
$5 n$ quadratic equations
c.f. optimally n equations

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
- High degree, but quadratic relation $(x y=1)$
- Invertible
- Nice DC/LC resistance
- But, produces many linearly independent quadratic equations

More equations lead to a weaker resistance against algebraic attacks!
$5 n$ quadratic equations
c.f. optimally n equations

Candidates of Appropriate S-box

- Niho exponent
- $x \mapsto x^{2^{s}+2^{s / 2}-1}$ over $\mathbb{F}_{2^{n}}, n=2 s+1$
- n equations, high-degree
- 2 multiplications, odd-length field

Candidates of Appropriate S-box

- Niho exponent
- $x \mapsto x^{2^{s}+2^{s / 2}-1}$ over $\mathbb{F}_{2^{n}, n=2 s+1}$
- n equations, high-degree
- 2 multiplications, odd-length field
- NGG exponent (Nawaz et al., 2009)
- $x \mapsto x^{2^{s+1}+2^{s-1}-1}$ over $\mathbb{F}_{2} n, n=2 s$
- $2 n$ equations, even-length field, good DC/LC resistance
- 2 multiplications

Candidates of Appropriate S-box

- Niho exponent
- $x \mapsto x^{2^{s}+2^{s / 2}-1}$ over $\mathbb{F}_{2^{n}, n=2 s+1}$
- n equations, high-degree
- 2 multiplications, odd-length field
- NGG exponent (Nawaz et al., 2009)
- $x \mapsto x^{2^{s+1}+2^{s-1}-1}$ over $\mathbb{F}_{2} n, n=2 s$
- $2 n$ equations, even-length field, good DC/LC resistance
- 2 multiplications
- Mersenne exponent
- $x \mapsto x^{2^{s}-1}$ over $\mathbb{F}_{2^{n}}$
- $3 n$ equations, even-length field, single multiplication
- moderate DC/LC resistance

Candidates of Appropriate S-box

- Niho exponent
- $x \mapsto x^{2^{s}+2^{s / 2}-1}$ over $\mathbb{F}_{2^{n}, n=2 s+1}$
- n equations, high-degree
- 2 multiplications, odd-length field
- NGG exponent (Nawaz et al., 2009)
- $x \mapsto x^{2^{s+1}+2^{s-1}-1}$ over $\mathbb{F}_{2^{n}}, n=2 s$
- $2 n$ equations, even-length field, good DC/LC resistance
- 2 multiplications
- Mersenne exponent
- $x \mapsto x^{2^{s}-1}$ over $\mathbb{F}_{2^{n}}$
- $3 n$ equations, even-length field, single multiplication
- moderate DC/LC resistance
- Gold exponent
- $x \mapsto x^{2^{s}+1}$ over $\mathbb{F}_{2^{n}}$
- Even-length field, single multiplication, good DC/LC resistance
- $4 n$ equations

Repetitive Structure for BN++

- Repeated multiplier technique (in $\mathrm{BN}++$)
- If prover needs to check multiple multiplications with a same multiplier,
- e.g. $x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}$
- Then, the prover can prove them in a batched way
- More same multiplier \rightarrow Smaller signature size

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
- If prover needs to check multiple multiplications with a same multiplier,
- e.g. $x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}$
- Then, the prover can prove them in a batched way
- More same multiplier \rightarrow Smaller signature size

Serial S-box
(Limited application of repeated multiplier)

Parallel S-box
(Full application of repeated multiplier)

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share
- Randomized structure
- Affine layer is generated from XOF

Symmetric Primitive AIM

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share
- Randomized structure
- Affine layer is generated from XOF

Cryptanalytic Scenario

- Single-user setting
- For a random (pt, iv) $\in \mathbb{F}_{2^{n}} \times\{0,1\}^{n}$, a single pair (iv, ct) is given
- Finding $\mathrm{pt}^{*} \in \mathbb{F}_{2^{n}}$ such that $\operatorname{AIM}[\mathrm{iv}]\left(\mathrm{pt}^{*}\right)=\mathrm{ct}$

Cryptanalytic Scenario

- Single-user setting
- For a random (pt, iv) $\in \mathbb{F}_{2^{n}} \times\{0,1\}^{n}$, a single pair (iv, ct) is given
- Finding $\mathrm{pt}^{*} \in \mathbb{F}_{2^{n}}$ such that $\operatorname{AIM}[\mathrm{iv}]\left(\mathrm{pt}^{*}\right)=\mathrm{ct}$
- Multi-user setting
- For random pairs $\left(\mathrm{pt}_{i}, \mathrm{iv}_{i}\right) \in \mathbb{F}_{2^{n}} \times\{0,1\}^{n}$, multiple pairs ($\mathrm{iv}_{i}, \mathrm{ct}_{i}$) are given
- Finding $\mathrm{pt}^{*} \in \mathbb{F}_{2^{n}}$ such that $\operatorname{AIM}\left[\mathrm{iv}_{i}\right]\left(\mathrm{pt}^{*}\right)=$ ct $_{i}$ for some i

Cryptanalytic Scenario

- Single-user setting
- For a random (pt, iv) $\in \mathbb{F}_{2^{n}} \times\{0,1\}^{n}$, a single pair (iv, ct) is given
- Finding $\mathrm{pt}^{*} \in \mathbb{F}_{2^{n}}$ such that $\operatorname{AIM}[\mathrm{iv}]\left(\mathrm{pt}^{*}\right)=\mathrm{ct}$
- Multi-user setting
- For random pairs $\left(\mathrm{pt}_{i}, \mathrm{iv}_{i}\right) \in \mathbb{F}_{2^{n}} \times\{0,1\}^{n}$, multiple pairs $\left(\mathrm{iv}_{i}, \mathrm{ct}_{i}\right)$ are given
- Finding $\mathrm{pt}^{*} \in \mathbb{F}_{2} n$ such that $\operatorname{AIM}\left[\mathrm{iv}_{i}\right]\left(\mathrm{pt}^{*}\right)=$ ct_{i} for some i
- IV misuse setting
- For some chosen iv_{i}, multiple pairs $\left(\mathrm{iv}_{i}, \mathrm{ct}_{i}\right)$ are given
- Finding $\mathrm{pt}^{*} \in \mathbb{F}_{2^{n}}$ such that $\operatorname{AIM}\left[\mathrm{iv}_{i}\right]\left(\mathrm{pt}^{*}\right)=$ ct $_{i}$ for some i
- Expected to be birthday-bound secure

(General) Cryptanalytic Results

Attack	Log of Complexity			Remark
	AIM-I	AIM-III	AIM-V	
Brute-force	149	214.4	280	Gate-count
Algebraic	137.3	194.1	260.1	Details in the next slide
LC	240	360	496	Impossible
DC	125	187	253	Impossible
Quantum	159.8	225.2	291.7	Depth * Complexity
Provable security	126.4	190.4	254.4	Everywhere preimage resistance in the random permutation model

(Algebraic) Cryptanalytic Results

Scheme	\#Var	(\#Eqs, Deg)	Grobner Basis		XL		Dinur's Algorithm	
			Deg. of reg.	Time	D	Time	Time	Memory
AIM-I	n	$(3 n, 10)$	51	300.8	52	244.8	137.3	138.3
	$2 n$	$(3 n, 2)+(3 n, 4)$	22	214.9	14	150.4	248.3	253.7
	$3 n$	$(9 n, 2)$	20	222.8	12	148.0	330.1	346.3
AIM-III	n	$(3 n, 14)$	82	474.0	84	375.3	202.1	203.3
	$2 n$	$(3 n, 2)+(3 n, 6)$	31	310.6	18	203.0	377.5	382.9
	$3 n$	$(9 n, 2)$	27	310.8	15	194.1	487.7	512.1
AIM-V	n	$(3 n, 12)$	100	601.1	101	489.7	264.1	265.9
	$2 n$	$(3 n, 2)+(3 n, 8)$	40	406.2	26	289.5	506.3	511.7
	$3 n$	$(6 n, 2)+(3 n, 4)$	47	510.4	20	260.6	716.1	732.3
	$4 n$	$(12 n, 2)$	45	530.3	19	266.1	854.4	897.7

Performance Comparison

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Dilithium2	1312	2420	0.10	0.03
Falcon-512	897	690	0.27	0.04
SPHINCS $^{+}-128 \mathrm{~s}$	32	7856	315.74	0.35
SPHINCS $^{+}-128 \mathrm{f}$	32	17088	16.32	0.97
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet $^{\text {Rainier }}$ 3	32	19776	7.09	5.24
BN++Rain $_{3}$	32	8544	0.97	0.89
AIMer-L1 (Updated)	32	6432	0.83	0.77
AIMer-L1 (Updated)	32	5904	0.59	0.53

Some Remarks

- Remark
- We submitted AIMer to KpqC and NIST PQC competition
- Our homepage: https://aimer-signature.org
- We are waiting for third-party analysis!
- Future work
- QROM security of AIMer
- More optimization on BN++

Thank you!

 Check out aimer-signature.org Question?