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• Additive secret sharing
• Secret is shared additively: 𝑥 = σ𝑖 𝑥

(𝑖)

• Addition is naturally compatible with shares

𝑥 + 𝑦 = 

𝑖

𝑥(𝑖) +

𝑖

𝑦(𝑖) =

𝑖

(𝑥 𝑖 +𝑦(𝑖))

• Multiplication needs a Beaver triple 𝑎(𝑖), 𝑏(𝑖), 𝑐(𝑖)
𝑖

s.t. 𝑐 = 𝑎𝑏

1. Compute 𝐴(𝑖) = 𝑥(𝑖) + 𝑎(𝑖), 𝐵(𝑖) = 𝑦(𝑖) + 𝑏(𝑖) and Open them

2. Locally compute 𝑧(𝑖) = 𝐴𝑦(𝑖) − 𝐵𝑎 𝑖 + 𝑐 𝑖 = 𝑥 + 𝑎 𝑦 𝑖 − 𝑦 + 𝑏 𝑎 𝑖 + 𝑐 𝑖 = 𝑥𝑦(𝑖)

𝑓
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Prover Verifier

1

2 3

? ? ?

1, 3

𝑓

• Ishai et al. proposed a generic conversion 
from MPC to ZKP

• Prover simulates a multiparty computation in 
her head

1. Prover simulates a multiparty 
computation of a function 𝑓

2. Prover commits to all the views of the 
parties

3. Verifier sends a random challenge
4. Prover opens the challenged view
5. Verifier checks consistency
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KKW Proof System (Picnic3)

• Picnic3 = KKW NIZK proof of knowledge + LowMC

• Poor soundness of 3-party → use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition
• 2-party secure channel model
• No multiplication triple needed
• 3-party fixed, large number of repetition

MPCitH with preprocessing
• N-party broadcast model
• Prover generates multiplication triples 

and commit to them
• Checking consistency by opening some 

of triples
• #parties↑, #repetitions↓

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Performance
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BBQ Signature Scheme

• BBQ = KKW with 𝔽28 multiplication triples + AES

• Motivation
• LowMC is not solid compared to AES
• AES has too much ANDs (LowMC = 600 ANDs, AES = 6400 ANDs)
• Arithmetic inversion leads to 40% smaller signature size

Boolean circuit

𝑥−1

Arithmetic circuit

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

BBQ 32 31568 unknown unknown

Performance



Banquet Signature Scheme

• Banquet = Multiplication-checking protocol + AES

• Idea
• Cut-and-choose → Sacrificing technique with inverse injection

Preprocessing “Computation”

𝑎1
𝑖
, 𝑏1

𝑖
, 𝑐1

𝑖

⋮

𝑎𝜏
𝑖 , 𝑏𝜏

𝑖 , 𝑐𝜏
𝑖

Too many triples are wasted!

Previous work

𝑥−1

𝑚

𝑚−1

Sacrificing triples “Verification”

𝑎1
𝑖
, 𝑏1

𝑖
, 𝑐1

𝑖

⋮

𝑎𝜏
𝑖 , 𝑏𝜏

𝑖 , 𝑐𝜏
𝑖

No triples are wasted!

This work

𝑥−1

𝑚

c

𝑚𝑐 = 1?



Banquet Signature Scheme

• Banquet = Multiplication-checking protocol + AES

• Idea
• Cut-and-choose → Sacrificing technique with inverse injection
• Batching verification

𝑠1, 𝑡1, 1
⋮

𝑠𝑚, 𝑡𝑚, 1

𝑎1, 𝑏1, 𝑐1
⋮

𝑎𝑚, 𝑏𝑚, 𝑐𝑚

Sacrifice to verify 𝑆 1 = 𝑠1, 𝑇 1 = 𝑡1
⋮

𝑆 𝑚 = 𝑠𝑚 , 𝑇 1 = 𝑡𝑚
𝑃 = 𝑆 ⋅ 𝑇

half of 𝑃(𝑋)

(Kind of) Sacrifice

to verify
𝑃 𝑅 − 𝑆 𝑅 𝑇 𝑅 = 0

Soundness error = 2𝑚/|𝔽 − 𝑚|

3𝑚 elements 𝑚+ 1 elements



Banquet Signature Scheme

• Banquet = Multiplication-checking protocol + AES

• Idea
• Cut-and-choose → Sacrificing technique with inverse injection
• Batching verification

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Performance

𝑠1, 𝑡1, 1
⋮

𝑠𝑚, 𝑡𝑚, 1

𝑎1, 𝑏1, 𝑐1
⋮

𝑎𝑚, 𝑏𝑚, 𝑐𝑚

Sacrifice to verify 𝑆 1 = 𝑠1, 𝑇 1 = 𝑡1
⋮

𝑆 𝑚 = 𝑠𝑚 , 𝑇 1 = 𝑡𝑚
𝑃 = 𝑆 ⋅ 𝑇

half of 𝑃(𝑋)

(Kind of) Sacrifice

to verify
𝑃 𝑅 − 𝑆 𝑅 𝑇 𝑅 = 0

Soundness error = 2𝑚/|𝔽 − 𝑚|

3𝑚 elements 𝑚+ 1 elements



Rainier Signature Scheme

• Rainier = Modified Banquet proof + New symmetric primitive Rain

• Motivation
• AES uses a small field, which occurs poor soundness
• Banquet already lifts 𝔽28 to 𝔽232 for soundness
• Inverse on a large field is not expensive in MPC
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• Rainier = Modified Banquet proof + New symmetric primitive Rain

• Motivation
• AES uses a small field, which occurs poor soundness
• Banquet already lifts 𝔽28 to 𝔽232 for soundness
• Inverse on a large field is not expensive in MPC

• Cryptanalytic characteristic
• Large inverse and random matrix are used for algebraic attacks
• Statistical attacks are not much of our interest

𝑥−1 𝑀1 𝑥−1 𝑀1 𝑥−1𝑚

𝑘 ⊕ 𝑐1 𝑘

𝑐

𝑘 ⊕ 𝑐2 𝑘 ⊕ 𝑐3

Rain3



Rainier Signature Scheme

• Rainier = Modified Banquet proof + New symmetric primitive Rain

• Motivation
• AES uses a small field, which occurs poor soundness
• Banquet already lifts 𝔽28 to 𝔽232 for soundness
• Inverse on a large field is not expensive in MPC

• Cryptanalytic characteristic
• Large inverse and random matrix are used for algebraic attacks
• Statistical attacks are not much of our interest

𝑥−1 𝑀1 𝑥−1 𝑀1 𝑥−1𝑚

𝑘 ⊕ 𝑐1 𝑘

𝑐

𝑘 ⊕ 𝑐2 𝑘 ⊕ 𝑐3

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Rainier3 32 8544 0.97 0.89

Rain3

Performance



BN++/Helium Proof System

• BN++: Optimization of BN protocol
• BN20: Sacrificing-based interactive proof protocol
• Remove needless broadcasts
• Repeated multiplier
• Known output share

𝑥 ⋅ 𝑦 = 𝑧
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BN++/Helium Proof System

• BN++: Optimization of BN protocol
• BN20: Sacrificing-based interactive proof protocol
• Remove needless broadcasts
• Repeated multiplier
• Known output share

• Helium: BN++ with RMFE (Reverse Multiplication-Friendly Embedding)
• Small field arithmetic has high soundness error
• Batch small field operations to a large field one

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Rainier3 32 8544 0.97 0.89

BN++Rain3 32 6432 0.83 0.77

Helium-AES 32 9888 16.53 16.47

Performance

𝑥 ⋅ 𝑦 = 𝑧



The AIMer Signature Scheme
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• Agrasta (C 18, AC 21)
• Jarvis/Friday (ePrint 18, AC 19)
• Chaghri (CCS 22, EC 23)



Motivation

• MPC(itH)-friendly symmetric primitives are advanced in directions of:
• S-boxes on large field
• Low multiplicative complexity

• Some symmetric primitives based on large S-boxes have been broken by algebraic 
attacks
• MiMC (AC 16, AC 20)
• Agrasta (C 18, AC 21)
• Jarvis/Friday (ePrint 18, AC 19)
• Chaghri (CCS 22, EC 23) Sufficient security

against
algebraic attacks

Best performance 
when combined to 

BN++



Inverse S-box

• Inverse S-box (𝑥 ↦ 𝑥−1) is widely used in MPC/ZKP-friendly ciphers
• High degree, but quadratic relation (𝑥𝑦 = 1)
• Invertible
• Nice DC/LC resistance
• But, produces many linearly independent quadratic equations
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• Inverse S-box (𝑥 ↦ 𝑥−1) is widely used in MPC/ZKP-friendly ciphers
• High degree, but quadratic relation (𝑥𝑦 = 1)
• Invertible
• Nice DC/LC resistance
• But, produces many linearly independent quadratic equations

Inv𝑥 𝑦
𝑛

ቐ
𝑓1 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

⋮
𝑓5𝑛 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

5𝑛 quadratic equations

c.f. optimally 𝑛 equations



Inverse S-box

• Inverse S-box (𝑥 ↦ 𝑥−1) is widely used in MPC/ZKP-friendly ciphers
• High degree, but quadratic relation (𝑥𝑦 = 1)
• Invertible
• Nice DC/LC resistance
• But, produces many linearly independent quadratic equations

Inv𝑥 𝑦
𝑛

ቐ
𝑓1 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

⋮
𝑓5𝑛 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

5𝑛 quadratic equations

More equations lead to a 
weaker resistance against 

algebraic attacks! 

c.f. optimally 𝑛 equations



Candidates of Appropriate S-box

• Niho exponent

• 𝑥 ↦ 𝑥2
𝑠+2𝑠/2−1 over 𝔽2𝑛, 𝑛 = 2𝑠 + 1

• 𝑛 equations, high-degree
• 2 multiplications, odd-length field
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Candidates of Appropriate S-box

• Niho exponent

• 𝑥 ↦ 𝑥2
𝑠+2𝑠/2−1 over 𝔽2𝑛, 𝑛 = 2𝑠 + 1

• 𝑛 equations, high-degree
• 2 multiplications, odd-length field

• NGG exponent (Nawaz et al., 2009)
• 𝑥 ↦ 𝑥2

𝑠+1+2𝑠−1−1 over 𝔽2𝑛, 𝑛 = 2𝑠

• 2𝑛 equations, even-length field, good 
DC/LC resistance

• 2 multiplications 

• Mersenne exponent
• 𝑥 ↦ 𝑥2

𝑠−1 over 𝔽2𝑛

• 3𝑛 equations, even-length field, single 
multiplication

• moderate DC/LC resistance

• Gold exponent
• 𝑥 ↦ 𝑥2

𝑠+1 over 𝔽2𝑛

• Even-length field, single multiplication, 
good DC/LC resistance

• 4𝑛 equations



Repetitive Structure for BN++

• Repeated multiplier technique (in BN++)
• If prover needs to check multiple multiplications with a same multiplier,

• e.g. 𝑥1 ⋅ 𝑦 = 𝑧1, 𝑥2 ⋅ 𝑦 = 𝑧2

• Then, the prover can prove them in a batched way
• More same multiplier → Smaller signature size



Repetitive Structure for BN++

• Repeated multiplier technique (in BN++)
• If prover needs to check multiple multiplications with a same multiplier,

• e.g. 𝑥1 ⋅ 𝑦 = 𝑧1, 𝑥2 ⋅ 𝑦 = 𝑧2

• Then, the prover can prove them in a batched way
• More same multiplier → Smaller signature size

𝑆1 𝑆2 𝑆3

𝑆1

𝑆2

𝑆3

Serial S-box 
(Limited application of repeated multiplier)

Parallel S-box 
(Full application of repeated multiplier)
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Cryptanalytic Scenario

• Single-user setting
• For a random pt, iv ∈ 𝔽2𝑛 × 0,1 𝑛, a single 

pair iv, ct is given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv pt∗ = ct
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Cryptanalytic Scenario

• Single-user setting
• For a random pt, iv ∈ 𝔽2𝑛 × 0,1 𝑛, a single 

pair iv, ct is given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv pt∗ = ct

• Multi-user setting
• For random pairs pt𝑖 , iv𝑖 ∈ 𝔽2𝑛 × 0,1 𝑛, 

multiple pairs iv𝑖 , ct𝑖 are given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv𝑖 pt∗ =
ct𝑖 for some 𝑖

• IV misuse setting
• For some chosen iv𝑖, multiple pairs iv𝑖 , ct𝑖

are given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv𝑖 pt∗ =
ct𝑖 for some 𝑖

• Expected to be birthday-bound secure



(General) Cryptanalytic Results

Attack Log of Complexity Remark

AIM-I AIM-III AIM-V

Brute-force 149 214.4 280 Gate-count

Algebraic 137.3 194.1 260.1 Details in the next slide

LC 240 360 496 Impossible

DC 125 187 253 Impossible

Quantum 159.8 225.2 291.7 Depth * Complexity

Provable
security

126.4 190.4 254.4 Everywhere preimage resistance in the 
random permutation model



(Algebraic) Cryptanalytic Results

Scheme #Var (#Eqs, Deg) Grobner Basis XL Dinur’s Algorithm

Deg. of reg. Time D Time Time Memory

AIM-I 𝑛 (3𝑛, 10) 51 300.8 52 244.8 137.3 138.3

2𝑛 3𝑛, 2 + (3𝑛, 4) 22 214.9 14 150.4 248.3 253.7

3𝑛 (9𝑛, 2) 20 222.8 12 148.0 330.1 346.3

AIM-III 𝑛 (3𝑛, 14) 82 474.0 84 375.3 202.1 203.3

2𝑛 3𝑛, 2 + (3𝑛, 6) 31 310.6 18 203.0 377.5 382.9

3𝑛 (9𝑛, 2) 27 310.8 15 194.1 487.7 512.1

AIM-V 𝑛 (3𝑛, 12) 100 601.1 101 489.7 264.1 265.9

2𝑛 3𝑛, 2 + (3𝑛, 8) 40 406.2 26 289.5 506.3 511.7

3𝑛 6𝑛, 2 + (3𝑛, 4) 47 510.4 20 260.6 716.1 732.3

4𝑛 (12𝑛, 2) 45 530.3 19 266.1 854.4 897.7



Performance Comparison

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Dilithium2 1312 2420 0.10 0.03

Falcon-512 897 690 0.27 0.04

SPHINCS+-128s 32 7856 315.74 0.35

SPHINCS+-128f 32 17088 16.32 0.97

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Rainier3 32 8544 0.97 0.89

BN++Rain3 32 6432 0.83 0.77

AIMer-L1 (Updated) 32 5904 0.59 0.53

AIMer-L1 (Updated) 32 3840 22.29 21.09



Some Remarks

• Remark
• We submitted AIMer to KpqC and NIST PQC competition
• Our homepage: https://aimer-signature.org
• We are waiting for third-party analysis!

• Future work
• QROM security of AIMer
• More optimization on BN++

https://aimer-signature.org/


Thank you!
Check out aimer-signature.org

Question?


